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in isotropic turbulence in all subregimes of wavenumbers. This i s  accomplished by making 
a systematic analysis of the effects of the fluid convection, viscosity and thermal diffusivity 
on the temperature spectrum. A generalized Heisenberg-von Weizsacker type model is 
used to  describe the statistical interaction of the Founer components of velocity and 
temperature. The latter is described in terms o f  kinetic energy and temperature variance 
transfer coefficients given by moments of the two spectra for large-wavenumber modes. 

1. Introduction 

The temperature field is made random by the irregular movements of the fluid and 
acquires statistical properties which are directly related to those of the turbulent velocity 
field. A prominent effect of the turbulent motion on the temperature field is a continual 
reduction of the length scale of the temperature fluctuations. The random convection 
of material elements of the fluid leads to distortion of these elements, and in the 
absence of thermal diffusion, a statistical increase in the gradients of temperature. T h e  
continual increase in  the magnitude of temperature gradients due to random convection 
will ultimately be halted by the smoothing action of thermal diffusion, and no further 
refinement of the temperature distribution can occur; this determines a length scale 
characterizing the smallest temperature 'eddies.' Arguments similar to those used i n  
Kolmogorov's (1941) theory may then be invoked to surmise that the small-scale 
structure of the temperature field has a measure of universality and has statistical 
properties which depend only weakly on the large-scale features of the field. T h e  
small-scale statistics of a scalar like temperature diffusing in a homogeneous turbulence 
have been studied by assuming that the temperature fluctuations are also homogeneous. 
Homogeneous rurbuience is a rheorericai ideaiization which implies that statistical 
quantities do  not depend upon their absolute position in space. This simplifies the 
treatment of turbulence by separating the interaction of the turbulent fluctuations with 
themselves from their interaction with the mean Row. Even though homogeneous 
turbulence has not been found either in the laboratory or in nature, i t  nonetheless 
provides a useful approximation to small-scale fluctuations in a convected scalar-like 

inhomogeneity. Such a situation may arise, for instance, in the case of a grid turbulence 
where a slight statistically homogeneous heating of the fluid close to the grid will 
produce a fluctuating temperature field which will be homogenized downstream of the 
grid by the dissipative action of the thermal-diffusive effects. 

temperaiure which has a characierisiic ;,=ngih scaie smaii compared -with the of 
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The problem to be studied is as follows (Batchelor 1959). The temperature field 
8(x, 1 )  in the fluid is governed by the equation 

where U is the velocity of the fluid and is usually assumed to be independent of e (i.e., 
the temperature is considered to be a dynamically passive scalar). One assumes (as 
implied by equation ( l ) ) ,  that there are only two properties of temperature that are 
relevant to the present mechanical processes. One is the property of constancy of 
temperature of a fluid particle in the absence of thermal diffusivity; the other is that 
the temperature is subject to thermal diffusion characterized by the thermal diffusivity 
K. The fluid, taken as incompressible, is in turbulent motion at high Reynolds 
number, and the length-scale characterizing the energy-containing eddies is L. The 
problem is to determine the statistical properties like the wavenumber spectrum of 
those components of the spatial distribution 8 that have a length scale compared 
with L. 

The first work on this problem was that due to Obukhov (1949) and Corrsin (1951), 
who looked into the primary features of the effect of random convection on the spatial 
distribution of 8 and pointed out that the quadratic term in equation (1) represents a 
transfer from Fourier components of &distribution of low wavenumber to those at 
high wavenumber similar to the case with the turbulent velocity field. Therefore, they 
argued that the hypotheses of Kolmogorov universal equilibrium theory for the u- 
distribution apply equally well to the &distribution, and if the Reynolds number and 
the Peclet number of the turbulence are sufficiently high, the statistical properties of 
the small-scale components of the 8-distribution in a group called the inertial-convec- 
tive suhrange are homogeneous, isotropic and steady, irrespective of the detailed form 
of the properties of the components with length scale of order of L. Moreover, the 
statistical properties of the small-scale components are affected by these large-scale 
components only inasmuch as the latter determine the magnitude of the rate of transfer 
of the scalar variance from large-scale to small-scale components. The 8-spectrum in 
the inertial-convective range is assumed to depend only on the average rate per unit 
volume of the fluid at which the scalar variance is transferred in the spectral space ,y 
and the average rate of viscous dissipation of kinetic energy per unit mass of the fluid E.  

The first step in a systematic generalization of the Obukhov-Corrsin model to 
include the effects of viscosity U and thermal diffusivity K is the classification of the 
various subranges of wavenumbers depending on the relative values of U and K. If, 
for instance, K >> U, then the temperature spectrum will experience diffsuvie effects at 
wavenumbers low enough for the kinetic energy spectrum not to be influenced by the 
viscous effects. The terminology for the various wavenumber ranges may be based on 
whether the wavenumber lies in the inertial or viscous range of range of the energy 
spectrum and the convective or diffusive range of the temperature spectrum. Thus, one 
defines the following sets of wavenumber ranges depending on whether the Prandtl 
number Pr is much smaller or much larger than unity: 

P w  1 :  inertial-convective: L-'<< k<< ( E / K ' ) ' / ~  

inertial-diffusive: ( E / K ' ) " " < <  k a  ( E / u ' ) ' / ~  
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Pr>> 1: inertial-convective: L - ' c  k<< 

viscous-convective: ( E / u ~ ) " ~ K  k<< ( E / K ~ ) ' / ~  

viscous-diffusive: k >> ( E / K 3 ) ' / 4  

the viscous-diffusive range is usually not recognized in cases for which Pr<< 1. 
The Obukhov-Corrsin theory does not take into account the intermittency in  the 

flow that arises due to the non-Gaussian nature of the small-scale statistics and leads 
to the spatial randomness of dissipation rates ,y and E ,  which would he expected to 
depend on Reynolds and Peclet numbers and to cause at the lower end of the convective 
subrange systematic departures from the Ohukhov-Corrsin scaling laws which use 
mean dissipation values. One could now follow Obukhov (1962) and Kolmogorov 
(1962) and reformulate the ideas in the Obukhov-Corrsin theory by introducing local 
mean dissipations, determined by averaging over a suitably small region in space. One 
could then assume that these are random variables following logarithmic normal 
distributions, and deduce how some of the original local similarity arguments applied 
to structure functions would change under the new interpretation (Shivamoggi ef al. 
1989). (A theory based on the joint probability distribution of the local mean dissipa- 
tions as a bivariate log-normal was given by Van Atta (1971) and with some further 
experimental corroboration by Antonia and Van Atta (1975). But this theory is restricted 
to Prandti members of unity so that it cannot treat the viscous-convective and inertiai- 
diffusive regimes prevalent for Prandtl numbers away from unity.) Alternatively, one 
could follow Mandelbrot (1976) and argue that the deviations from the Obukhov- 
Corrsin scaling laws are related to the fractal aspects of the geometry of turbulence 
(Chechetkin ef al 1990). In particular, one may assume that the average dissipation 
rates ,y and E are concentrated on sets with non-integer Hausdorff dimensions. One 
may formuiaie ihese ideas in a simpiet way through the so-caiied 6-modei (Frisch er 
a /  1978). The key assumption in this model is that the fluxes of energy and scalar 
variance are transferred only to fixed fractions p and y of the eddies downstream in 
the cascade. However, the p-model has been found not to fit the experimental measure- 
ments (Antonia et a /  1984) well, because a single parameter given by the uniform 
fractal dimension is not adequate to describe the fractal nature of turbulence. A third 

and E (Andrews and Shivamoggi 1990). This model was a natural consequence of 
using the marginal gamma distribution to describe the local kinetic energy dissipation 
E by Andrews et a /  (1989), and is found to fit the experimental measurements (Antonia 
er a[ 1984) well. 

The intermittency corrections mentioned in the foregoing may, however, be too 
xx!! :e a!!=... an experimental \zerification 8t the csza! !eve! ofreso!utioc &the energ,, 
and temperature spectra. One may therefore seek to make a systematic analysis of the 
effect of fluid convection, viscosity and thermal conductivity on the temperature 
spectrum. However, this approach has proved to be controversial since conflicting 
results have been given by several workers. The first work along this line was that of 
Batchelor et a /  (1959) who deduced that the temperature goes like k-'"' in the 
ifiprt.i&diffgsiye rlfige. Thin result wag also deduced by Herring ei al (!9X?) using 1 
quasinormal approximation and by Kraichnan (1968) using the Lagrangian-history 
direct-interaction approximation. Recently Chasnov el a /  (1988, 1989) also confirmed 
this result using a numerical simulation but the precise range of wavenumbers for 
which this result holds was not clear. However, Gibson (1968% b) presented cases 

aiiiiroaiX is io adopt the j&; &t;ibu;ioii CGr the aveiage dissipaiioii ia;ej 
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showing a power law of k-3  for this range, and Corrsin (1964) and Leith ( 1 9 6 8 ) ~  
predicted an exponential form for the spectrum. One would have hoped that this 
controversy should he resolved experimentally. But experiments have not been possible 
in this regime. We propose to try to clarify the existing picture by using instead the 
generalized Heisenberg-von Weizsacker type model for the statistical interaction of 
the Fourier components of U and 8. 

According to the generalized Heisenberg-von Weizsacker type model, the transfer 
of the scalar variance from large to small wavelengths is described by a gradient- 
diffusion type cascade process (i.e. a small-scale rapidly adjusting motion superimposed 
on a large-scale slowly adjusting motion) characterized by a 'eddy thermal conductivity' 
produced by large wavenumber modes acting to remove scalar variance from small 
wavenumher modes. This idea is similar to the one originally proposed by Heisenberg 
(1948) and von Weizsacker (1948) for the transfer of turbulent kinetic energy and 
generalized by von Karman (1948). The latter model has been shown (Uberoi and 
Narain 1974) to compare more favourably with experiments than the original 
Heisenberg-von Weizsacker model. We will show in this paper that the generalized 
Heisenberg-von Weizsacker type model gives the temperature spectra in all the suhre- 
gimes of wavenumbers (namely, the inertial-convective, viscous-convective, inertial- 
diffusive and viscous-diffusive regions) in a unified way through a single formula. (It 
may be mentioned that an eddy thermal diffusivity model has also been recently given 
by Charnov er al (1989), but this model prertains only only to the inertial-diffusive 
range and lacks the broad scope and generality of the present formulation.) We will 
demonstrate the existence of a bump in the temperature spectrum in the viscous- 
convective regime observed in experiments (Williams and Paulson 1977, Champagne 
et a /  1977). The bump has also been predicted by the eddy-damped quasinormal 
Markovian model (Herring ei a1 1982) and the recent numerical simulation of Kerr 
(1990). The bump in the temperature spectrum therefore has a sound physical basis 
even though in an experimental situation some of it may be due to the breakdown of 
Taylor's hypothesis because of the changing mean flow conditions. 

B K Shivamoggi and L C Andrews 

2. Fourier analysis of the turbulent fields 

Fourier analysis of the velocity and temperature fields, when they are stationary random 
functions of position, affords a view of the turbulent motion as composed of the 
superposition of motions of a large number of components of different scales. These 
component contribute additively to the total kinetic energy and total scalar variance 
and interact with each other according to the inertial and convective terms in the 
governing equations. Fourier representation is well justified for infinitely extended 
homogeneous random fields, like the ones we have under discussion. 

Let us express the flow properties at any point x at time f, as a superposition of 
plane waves of the form 

u(x, t) =x ~ ( k )  e'*'I 8(x, 1 )  =!: O ( k )  e'''*. (2) 
x x 

We have dropped the argument I, on the right-hand side in (2), for convenience. We 
then obtain from equation ( I )  

(:+ rk ' )  O (k )  = -ik, 1 V,(k')O(k - 
k '  

k ' ) .  (3) 
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3. Generalized von Karman-Heisenberg-von Weizsacker-type model for the excitation 
of temperature fluctuations 

We have from equation (3) the following equation for the isotropic temperature 
spectrum function T(k): 

(:+Zrk")T(k)=f. U,,,(k, k') (4) 

where 

T(k) -$3(k)l' (5) 

and 

U,,, ( k, k ') = -ik, 0 ( k) V,  ( k ')e ( k - k ') . ( 6 )  

When the volume of the flow region becomes large, we may replace the Fourier 
sum in (4) by a Fourier integral 

..,ha-- All,  I,,\ +L- -_t _I:_ - C o o m t  -_"- h.. --A-- - P  ~ -..- Le- I ,  C--- - I (  
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modes in the range k' t o  k'+dk'. In order to write an expression for this quantity, it 
is necessary to make some assumption about the convective transfer of scalar variance 
across the spectrum. 

If each mode in the range of wavenumbers from k '=  k to k ' = m  is to make a 
separate and similar contribution to the 'eddy thermal diffusivity' K ( k ) ,  then by 
dimensionz! cnnsiderztlons w e  ma" write 

Q ( k ,  k')= { - 
i 

2A[ E(k')I3I2-" k"/'-"[r( k)]"k" k ' i k  
k ' >  k (8) 2A[r(  k)]"z-"kI/2-" [E(  k')]"k" 

where A is a universal constant and m and n are arbitrary constants. Equation (8) 
implies that the process of transfer of scalar variance from large to small wavelengths 

discnssed iE !) and that 
the eddy thermal diffusivity K(k) depends on the kinetic energy density E(k)  and the 
wavenumber k only (see (10) below) which is reasonable because the temperature 
field has been assumed to behave like a passive scalar made random upon advection 
by the turbulent velocity field. This idea has its antecedents in the earlier works of 
Taylor (1922) and Saffman (1969) on the diffusion of a passive scalar in a turbulent 

correlation function. 

values k is given by 

is de3cribed by a gra$ient-diRu3ion ?ype 

vP!oci!y fie!d wherein the di!?.sian coc&ient is expressed in terms of the ve!ocity 

The rate of loss of scalar variance by modes with wavenumbers less than some 

where 

(10) [E(k')]nk"'' dk'. 
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Let us now replace the left-hand side in equation (9) by the total rate of decay of 
scalar variance, x. (This is valid for values of k sufficiently large so that 

B K Shivamoggi and L C Andrews 

Jok r ( q d v > >  J m r ( k ) d k  
k 

which, in turn, is valid if only a negligible amount of scalar variance is contained in 
wavenumbers greater than k.) One then obtains from equation (9) 

(11) 

Equation ( 1 1 )  is the main result of the present paper; the corresponding result for 
the velocity field was given by yon Karman (1948). A solution of equation ( l l ) ,  for 
arbitrary values of m and n has not been obtained. However, it is possible to obtain 
the forms of solution of equation ( 1 1 )  in the limit of small and large values of the 
wavenumber k. 

For the inertial-convective range, which corresponds to K << i ( k )  and U<< i ( k ) ,  
noting that now E ( k )  - k-5'3 (Obukhov 1949, Corrsin 1951), (11) gives the well known 
result: 

r( k )  - k-s'3. (12) 
For the viscous-convective range, which corresponds to K i ( k )  and Y >> i ( k ) ,  

noting that now E(k)-k-'""'"-" (see Uberoi and Narain 1974), on writing (11) 
in the following form, 

2K J k m r ( v ) v z d v = u  [E(k')]"k'" dk'  Jok [T(k")]"2-"k""2-" dk" (13) 

we obtain 

T ( k )  - k-!-['"-'"'"-'""/!-" 

_I. ~ 

This gives Batcheior's (1959) resuits, I (kl- k-', for 

6) n <  1 and m < f ( 5 n + l ) ,  or 
(ii) 1 < n <+ and m > f ( 5 n  + 1 )  

so that E ( k )  - k?, p >$ as befits a viscous regime. The rise in the temperature spectrum 
indicated by the above result describes the hump in the temperature spectrum observed 
by Williams and Paulson (1977) and Champagne et al (1977). Physically, this bump 
is due to the fact that the viscous dissipation of the 'driver' velocity fluctuations causes 
the 'driven' temperature fluctuations to pile up in the wavenumber space. 

For the inertial-diffusive range, which corresponds to K >> K ( k )  and Y >> i ( k ) ,  noting 
that now E(k) -k - '" ,  (13) gives 

r( k )  I k-:"+"-2 ( 1 5 )  

which yields the result of Batchelor er al (1959). T ( k ) -  k-"", for m = -2 and n = 1. 
The steeper temperature spectrum indicated by the above result is due to the fact that 
the temperature fluctuations are being rushed to higher wavenumbers by the strong 
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inviscid velocity fluctuations while being dissipated at the same time by thermal 
diffusivity. The verification of the spectral laws in the inertial-diffusion regime has 
been tenuous. This is due in part to the exotic nature of the low Prandtl-number 
materials like liquid mercury and sodium and the concomitant experimental difficulties 
have yet to be adequately resolved. 

For the viscous-diffusive range, which corresponds to K >> 2 ( k )  and U >> i ( k ) ,  noting 
that now E ( k )  - k-(m-21/("-1)  , (13) gives 

(16) 

Equation (16) is identical to the spectral law of E ( k )  in the viscous regime, as it should 
be, because, under the assumption of temperature behaving like a passive scalar, the 
spectral properties of the temperature field must be the same as those of the velocity 
field in the common dissipative regimes of the two fields. Thanks to the presence of 
two free parameters m and n, (16 )  can give an arbitrarily steep power law. 

The above results regarding the shape of the 0-spectrum in the various wavenumber 
ranges are compared with the previous results in table 1. 

r ( k )  I k-("-2)/("-l) 

Table 1. Comparison of previous and present results 

Subrange Previous results Presented results 

Inertial-convective k-5'' (Obukhov, Corrsin) k - 5 / 3  
Viscous-convective k- '  (Batchelor) k - ~ . ~ ~ " , . ~ ) , , , , ~ ~ , , " , ~ . "  

m. n free parameters 

m, " free parameters 

k - " / 3  (Batchelor er 0 1 )  k-!"'"-i Inertial-diffusive 
k-' (Gibson) 
k - 5 / 3  (Corrsin) 

Viscous-diffusive k., e""w (Batchelor) k-'"-*','"-o 
m, n free parameters 

4. Heisenberg-von Weizsacker type model for the excitation of temperature 
fluctuations 

For the Heisenberg-von Weizsacker type model for the convective transfer of scalar 
variance, for which m = -$and n = f ,  an explicit solution for equation (11) can be given: 

where 

Equation (18) leads to the following results for the various ranges: 

viscous-convective: T ( k ) - k  (19) 

(20) 

viscous-diffusive: r( k )  - E'. (21) 

inertial-diffusive: r ( k )  - k-"l3 



4728 B K Shivamoggi and L C Andrews 

It is to be noted that (20) agrees with the result given by Ogura (1958). Equation 
(21) is identical to the well known spectral law for E(k)  in the viscous regime with 
the Heisenberg-von Weizsacker model. On the other hand, interestingly enough, (19) 
can be recovered by a model based on a stationary continuous spectral cascading 
process (due to the advective term in equation (1)) for the transfer of the scalar variance 
to large wavenumbers. This idea is similar to the one originally proposed by Onsager 
(1949) in the form of a discrete cascade and generalized to the form of a continuous 
cascade by Corrsin (1964) and Pao (1965) for the transfer of turbulent kinetic energy 
at large wavenumbers. 

If S(k)  is the spectral flux function of the @-field, i.e. it is the rate at which the 
spectral content of the Q-field flows in  wavenumber space from wavenumbers smaller 
than k to wavenumbers greater than k, we have 

rate of gain or loss of spectral 

content of 0’ per unit wavenumber 
- 

which is a generalization of Onsager’s proposition to a non-conservative cascade 
process. A non-conseervative cascade is one in which a steady temperature spectrum 
can be maintained against the dissipative action of thermal diffusitivity K only by a 
net gain of the scalar variance resulting from the interaction of the Fourier components 
of temperature and velocity. 

Now, in the viscous-convective range, the thermal-diffusive effects are not impor- 
tant, so that we have a conservative cascade process 

If we now visualize the transfer of scalar variance as a cascading process in which 
the spectral content of the scalar variance is continuously transferred to ever larger 
wavenumbers, the flux of the scalar variance across k can then be written as 

dk  
S ( k ) = r ( k ) -  

d t  (24) 

where dk/d t  is the spectral cascading rate. Let us now assume that this process depends 
on E (the rate at which the turbulent kinetic energy is fed to small eddies), on the 
viscosity v, and on the wavenumber k (or equivalently, the size of the small eddies). 
On dimensional grounds, we have then for the spectral cascading rate 

Using (24) and (E), equation (23) then gives 

T(k)-k 

in agreement with (19). 

5. Discussion 

We have given in this paper a unified formulation of the spectra of temperature 
fluctuations in isotropic turbulence in all subregimes of wavenumbers. For this purpose, 
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a generalized Heinsenberg-von Weizsacker type model has been used to describe the 
statistical interaction of the Fourier components of velocity and temperature. This 
model is able to describe in a unified way not only the well known result for the 
inertial-convective regime but, by adjusting its free parameters, also the results for 
other subregimes of wavenumbers in a satisfactory way. The results compare favourably 
with other existing formulations of the spectra of temperature fluctuations which give 
only a piece-by-piece treatment of the various subregimes of wavenumbers. 
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